The California Rockfish Conservation Area and Groundfish Trawlers at Moss Landing Harbor

Michael Dalton

California State University, Monterey Bay

Stephen Ralston

National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz

Overview and motivation

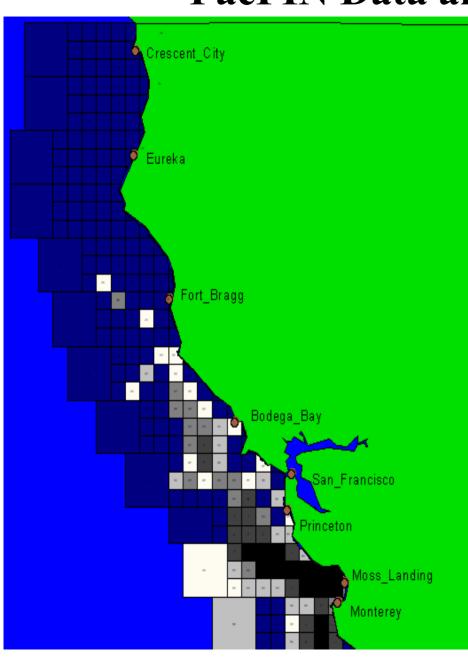
- Rebuilding stocks of bocaccio, canary, darkblotched, widow, yelloweye rockfish ...
- Bycatch for groundfish trawlers that target dover sole, thorny heads, sablefish ...
- Spatial regulations could protect overfished stocks and allow opportunities for others

Economic Effects of Spatial Management

- A = Net Revenue Per Unit Effort in an Area
- H = Fishing Effort in an Area
- Fishery Economic Value in an Area V = A H
- Decomposition of Change in Value:

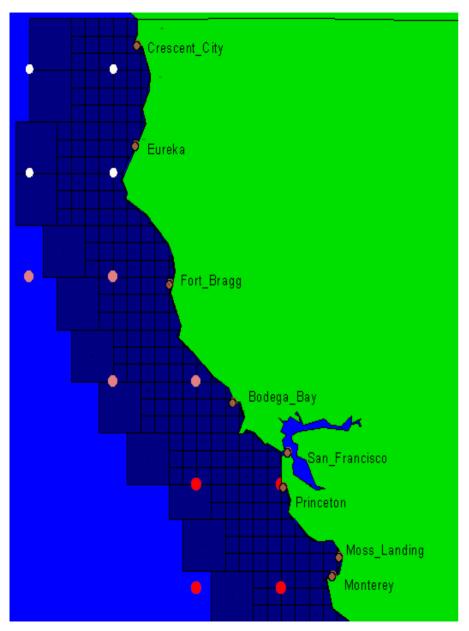
$$A'H' - AH = (A' - A)H' + A(H' - H)$$

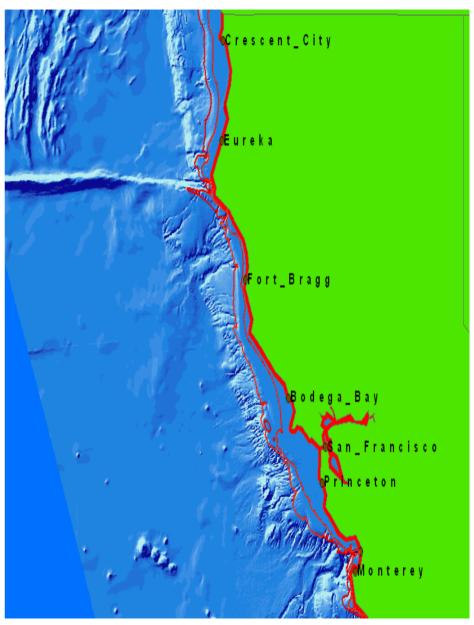
• Conclusion: Effort shifts *and* changes in RPUE important for evaluating spatial management

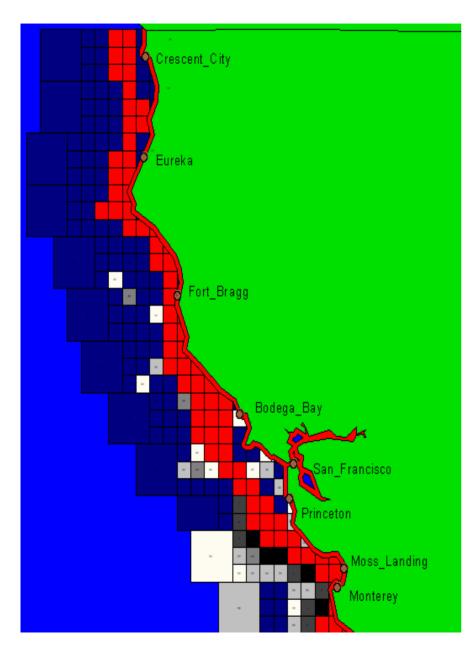

Recent West Coast Spatial Management

- Marine Reserves Processes
 - Channel Islands National Marine Sanctuary
 - California Marine Life Protection Act
- Pacific Fishery Management Council
 - 2003 Groundfish Regulations
 - Bycatch and Discard Analysis

Policy and Management Implications

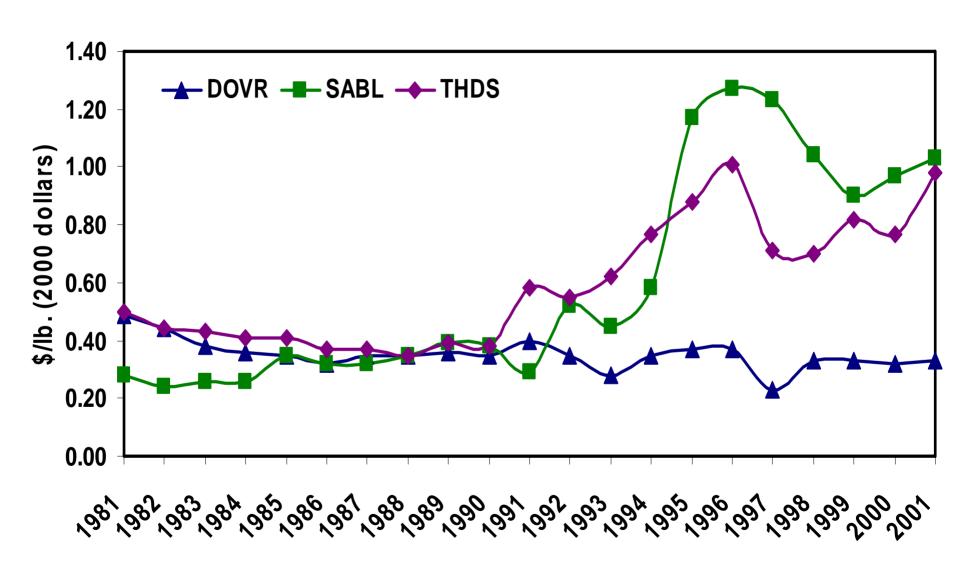

- Economic analysis for Channel Islands:
 - Cost = -A H in closed area, claim upper bound
 - Ignores effort shift, RPUE change in open area
- PFMC analysis of 2003 regulations
 - Estimates effort shift but not RPUE change
- Neither analysis has statistical basis
- Objective here to provide statistical basis for analyzing shifts in effort and changes in RPUE


PacFIN Data and GIS analysis

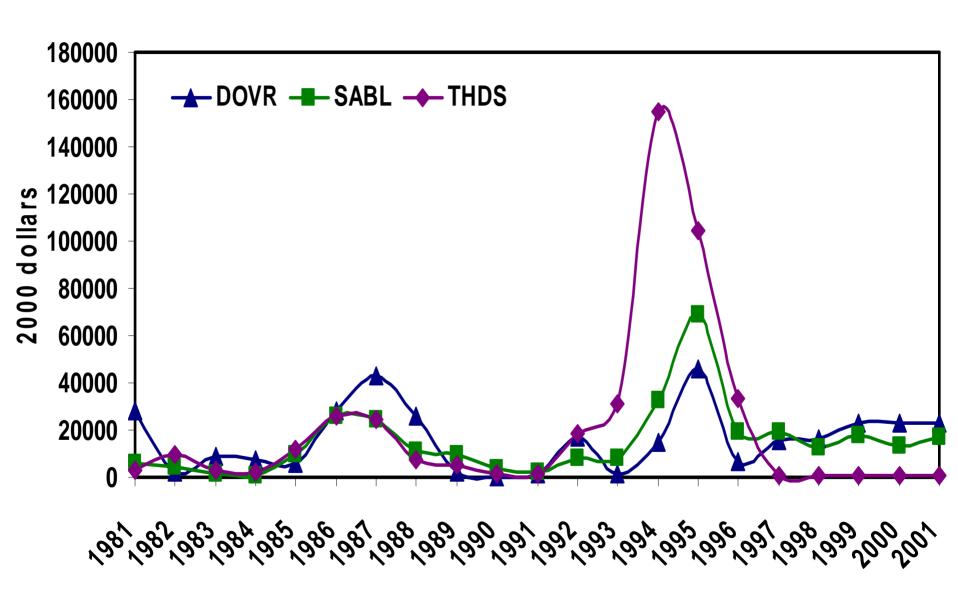

- California PacFIN trawler logbook and ticket data
- 1981-2001, north of Point Conception
- GIS by port and DFG fishing blocks
- Query GIS for Moss Landing data on tow hours, catch, and ex vessel prices

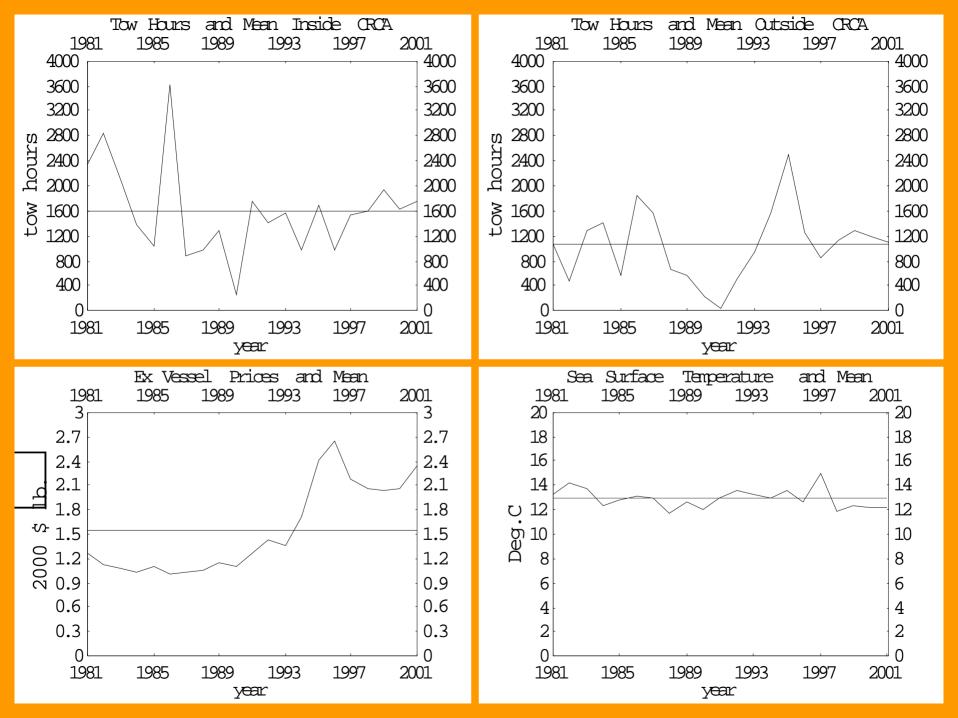
IRI SST and DFG bathymetry data

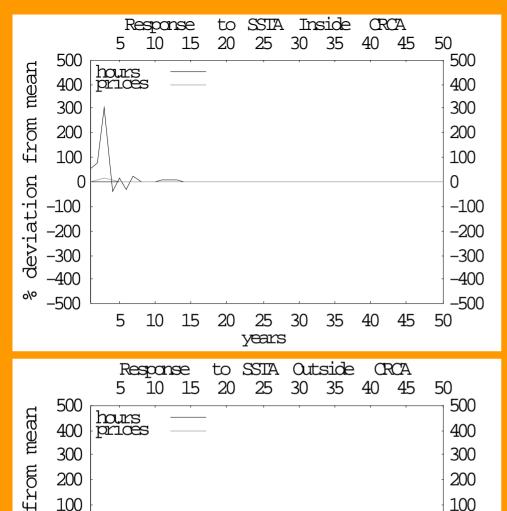
California Rockfish Conservation Area (CRCA)



- CRCA
 - Inshore zone>3nm and <50-60fm
 - Offshore zone
 >150fm Pt. Reyes
 south, >250fm north
- Area 1: DFG blocks inside CRCA
- Area 2: DFG blocks outside CRCA


Data for vector autoregression (VAR) analysis


- Compile time series data for Moss Landing
 - Total tow hours for blocks inside and outside CRCA, 1981-2001
 - Cumulative ex vessel prices for DTS species at Moss Landing
 - Nov-March Average sea surface temperatures (SST) for ENSO index
- Quadrivariate (four variable) VAR
 - Data are deviations from means
 - Data are covariance stationary
 - Second-order restrictions appropriate


DTS Ex Vessel Prices at Moss Landing

DTS Revenues at Moss Landing

deviation

-100

-200

-300

-500

5

10

15

20

30

years

35

40

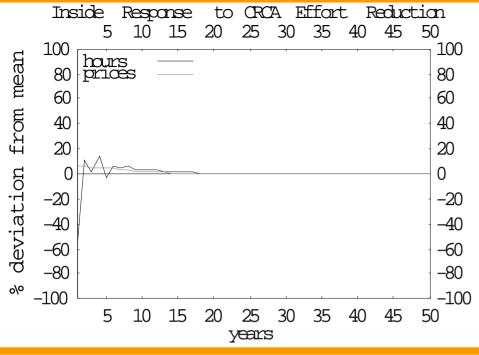
45

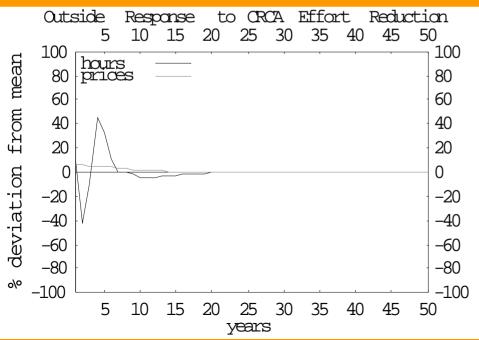
- Orthogonalized
 impulse response
 functions simulate
 1997-98 ENSO
- Increase in effort inside CRCA
- Decrease outside

0

-100

-200


-300


-400

-500

50

- Inshore movement of effort from ENSO
- Modest increase in ex vessel prices

- Response to a temporary effort reduction in the CRCA equal to total tow hours in 2001
- Reduction inside CRCA followed by rapid return to mean
- Increase outside with oscillations
- Modest increase in ex vessel prices

Granger causality tests

- Multivariate test rejects excluding effort outside
 CRCA from the VAR at 5% significance level
- Effort outside CRCA could be Granger causing:
 - 1. Ex vessel prices
 - 2. Fishing effort inside CRCA
 - 3. SST (fishermen's expectations)
- Bioeconomic model here allows 3 only
- Bivariate tests inconclusive
- T-statistics from VAR support 3

Bioeconomic Model components

- Two area model with stochastic dynamics
- Net RPUE A t depends on
 - Effort H_t in the area (crowding externality)
 - Abundance N_t in the area (dynamic externality)
 - Ex vessel prices P_t at the port
- $A_t = f_0 + f_1 H_t + f_2 N_t + f_3 P_t$

Bioeconomic Model components

- Abundance N_t depends on
 - Effort H_t in the area (fishing mortality)
 - Lagged abundance N_{t-1}
 - Stochastic recruitment or migration X_t
- $N_t = g_0 + g_1 H_t + g_2 N_{t-1} g_1 g_2 H_{t-1} + X_t$
- Stochastic recruitment depends on
 - Sea surface temperature S_t
 - random factor Y t
- $X_t = \tau S_t + Y_t$

Bioeconomic model components

SST and Y t are first order Markov processes

$$S_t = \rho S_{t-1} + \varepsilon_{st}$$

$$Y_t = \lambda Y_{t-1} + \varepsilon_{yt}$$

• Ex vessel prices have a first-order form

$$P_t = φ_1 P_{t-1} + φ_2 S_{t-1} + ε_{pt}$$

• The $\epsilon_{k\,t}$ are least-squares residuals with finite variance and zero conditional mean

Fisherman's problem

• Dynamic and spatial adjustment costs

$$R = \frac{1}{2} \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix}$$

• Each fisherman has discount factor $0 < \beta < 1$ and chooses random vectors of fishing effort h to maximize an expected present value of profits:

$$E \Sigma_{t} \beta^{t} (A_{t} h_{t} - (h_{t} - h_{t-1})' R (h_{t} - h_{t-1}))$$

Model solution and regression equations

- Solution given by stochastic Euler equations and transversality conditions
- Solving the fisherman's problem involves many tedious steps of algebra
- Highlights are
 - Factoring characteristic matrix polynomial
 - Wiener-Kolmogorov prediction formula
 - Construction of orthogonal forecast errors
- End result: system of four regression equations that incorporate parameter restrictions of rational expectations hypothesis

Maximum likelihood estimates

Parameter	Equation/Variable	CRCA	Outside	Joint
\mathbf{f}_1	RPUE/Effort	-0.881	-0.501	
\mathbf{f}_2	RPUE/Stock	0.194	0.166	
f ₃	RPUE/Price	0.094	0.009	
g 1	Stock/Effort	-0.013	-0.233	
g 2	Stock/Stock	-0.028	0.031	
r	Adjustment Cost	0.007	0.489	
τ	Stock/SST	0.231	-0.257	
λ	Random	-0.296	0.077	
φ1	Price/Price			0.963
φ2	Price/SST			0.048
ρ	SST			-0.126

Likelihood ratio tests of bioeconomic model

Test	Statistic	Significance
Asymptotic χ ²	12.354	0.09
Small Sample	5.491	0.60

- Bioeconomic model tested against less restricted third-order VAR alternative
- First test statistic has asymptotic chi-squared distribution
- Second test statistic modified for small sample bias
- Neither test rejects bioeconomic model at 5% significance level

Conclusions

- VAR analysis shows significant differences inside and outside CRCA
 - Inshore movement from ENSO
 - Effort displacement from CRCA
- Bioeconomic model gives reasonable results
 - RPUE inside CRCA more sensitive to vessel crowding
 - RPUE inside CRCA more sensitive to changes in ex vessel prices
 - Adjustment costs greater outside CRCA
 - Stock/SST effects support VAR results

Next steps for data and model development

- Historical regulatory data including trip limits for DTS species from SAFE documents
- Species detail from stock assessments, rebuilding analyses, etc. to identify additional parameters and estimate bycatch
- Relax model assumptions to predict effort shifts
 - 1. Adjustment costs
 - 2. Stock recruitment and migration
 - 3. Address effort and ex vessel prices

Acknowledgements

- National Marine Fisheries Service, Division of Statistics and Economics
- California Seagrant
- William Daspit (PSMFC/PacFIN),
- Rita Curtis (NMFS), Church Grimes (NMFS),
 Pat Iampietro (CSUMB), Carrie Pomeroy
 (UCSC), Rick Starr (CSG), Cindy Thomson
 (NMFS), Charlie Wahle (NOAA MPA Center),
 Gina Wade (CDFG), Nancy Wright (CDFG)